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Abstract. We carry out an investigation of the propagation of axisymmetric poloidal shear
Alfvén waves in a spherical shell of resistive plasma with a background dipolar magnetic field.
Using a numerical iterative method to solve this eigenvalue problem, we show that the energy
of such waves is trapped in the magnetic polar neighbourhood. This observation may specially
be of interest for the asteroseismology of magnetic stars. Some other new features have been
discovered, such as thin internal shear layers due to resonant magnetic field-lines.
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1. Introduction

In recent years, the problem of the asteroseismology of magnetic stars has
mainly been studied from the point of view of acoustic oscillations pertubated
by a permanent magnetic field (Bigot et al., 2000). An other approach to
the problem deals with the indirect effect of the magnetic field on the driv-
ing of the oscillations (Balmforth et al., 2001). roAp’s pulsational properties
were until recently described by the so-called oblique pulsator model (Kurtz,
1990), but it is still an open question whether the magnetic axis is the same
as the pulsation axis in these stars (Bigot and Dziembowski, 2002).

Motivated by the conclusion that regular perturbation methods are not
valid in stellar atmospheres where low values of the -parameter of the plasma
are found, and that the model of Balmforth et al. does not explicitly take into
account the Lorentz force, we consider a simple situation involving a spher-
ical layer of incompressible resistive plasma submitted to a strong dipolar
magnetic field. Of course, this outrageously simplified model does not allow
to determine the eigenfrequencies of roAp stars, as the real problem is far
more complicated. The main purpose of this idealization is to clarify the role
played by the dipole field in the spatial structure of Alfvén modes.
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2. Definition of the eigenvalue problem

2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The oscillations in shear Alfvén modes of an incompressible plasma layer
obey the following set of non-dimensional equations

[

xV = Ox ((O0xB)xB)+EDNxAV
x (Vx B) + EmAD

1)

CHCe> >

. . l

ola ©
I

© o [

where E = v/(RVa) ~ 10713 characterizes the diffusivity effects of radiative
viscosity, Em = Vm/(RVa) ~ 1078 is the analogous for ohmic dissipation and
Va is the Alfvén velocity. Both numbers measure the non-adiabaticity of the
layer. In the following, X = (V, b) is an eigenvector composed by the velocity
and magnetic perturbations, and A = iw+ T is the associated eigenvalue.

In addition to the previous equations we use the following boundary con-
ditions. On the upper boundary we impose that tangential stresses vanish and
require the continuity of the magnetic field with a potential external field. On
the inner boundary, we also use stress-free conditions and freeze the dipolar
magnetic field by imposing an infinitely conducting core. We are thus faced
with a generalized eigenvalue problem of the form 24X = A‘BX, where the 4
and B are differential operators.

2.2. PROJECTION AND SYMMETRIES

We project the radial part of the problem on a Gauss-Lobatto grid with a lot
of mesh points near the boundaries so that boundary layers can be resolved
more efficiently.

The angular part of the problem is projected on the spherical harmon-
ics base. The effect of the magnetic field is then to couple the | and | 41
components together, so that it is not possible to characterize the mode by
two quantum numbers (n,l) as is often the case in asteroseismology. In the
axisymmetrical case (m= 0), which will be the only one discussed here, the
poloidal components are decoupled from the toroidal ones, which reduces
significantly the size of the numerical problem. Another property of the ax-
isymmetrical case is that a global parity of the mode with respect to the star’s
equator can be defined, and that this parity is opposite for the velocity and
magnetic perturbations.
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3. Axisymmetric poloidal shear Alfvén eigenmodes

3.1. EIGENVALUE SPECTRUM AND ASSOCIATED EIGENFUNCTIONS
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Figure 1. Top left: eigenvalue spectrum of axisymmetric poloidal eigenmodes in the complex
plane. The other pictures represent a meridional cut of the distribution of magnetic energy
(right quadrants) and dissipation (left quadrants) in the shell for various modes with different
periods (or radial wave numbers) and horizontal wave numbers.

The most obvious feature of these modes is their focalization near the
magnetic pole. Actually, as can be seen on Fig. 1, their geometry depends on
two quantified wave numbers which can roughly be identified as a radial k,
and perpendicular kg waves numbers. The top left plot of Fig. 1 shows that w
depends mainly on k; because near the pole k; is nearly parallel to the field
lines (this is expected from the plane Alfvén waves dispersion relation). Also,
these Alfvén waves are dispersive because the Alfvén speed scales as 1/r3 on
the polar axis for a dipole field.

3.2. ADIABATIC VERSUS NON-ADIABATIC FEATURES

We explored the evolution of the modes when the various diffusivities where
decreased. The polar structure of the mode persists in the adiabatic limit and
can be described by low-degree harmonics. On the other hand, some internal
singularities appear in this limit because of the presence of shears on resonant
field lines, which are an important obstacle for the numerical investigation. In
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the thin-shell limit internal layers can be observed very well by keeping only
the high-degree components of the spherical harmonics decomposition.
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Figure 2. Distribution of magnetic energy in a meridional plane in the thin shell limit. Only
the contribution of |1 > 300 harmonics is used in the right picture to underline the numerical
difficulties raised by the existence of resonant magnetic field lines (2, 3, etc. nodes instead of
one single node near the pole).

4. Conclusions

In this paper we presented some properties of shear Alfvén waves in spherical
geometry, when a dipolar magnetic field was present. Using quite a crude
model, it is possible to shed some light on interesting features like focaliza-
tion near the poles and internal layers. The next steps in this study will be
to consider toroidal and non-axisymmetric oscillations, so as the coupling
between acoustic and magnetic waves, to obtain a more realistic model of
roAp star.
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