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Abstract. An investigation of shear Alfvén waves inside a spherical shell
is carried out, in which the background magnetic field is dipolar and re-
sistive effects are taken into account. Numerical results indicate two basic
behaviours for both the axisymmetric and non-axisymmetric cases. Poloidal
modes appear to remain regular, except for internal shear layers, when ki-
netic and magnetic diffusivities become arbitrarily small, whereas toroidal
modes become singular. The corresponding eigenvalues also exhibit different
behaviours in the two cases. Analytical results are provided for the axisym-
metric toroidal case.
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1 Introduction

Numerous astrophysical systems exhibit a pulsating behaviour which may be sig-
nificantly affected by the presence of a strong magnetic field. roAp stars are
probably the most striking examples of such systems and have been the focus
of intense work in recent years. A number of complementary models (see Kurtz
(1990), Dziembowski & Goode (1996), Balmforth et al. (2001)) have been put forth
to explain the dynamics of these stars, but have had to resort to an approximate
treatment of the effects of the magnetic field. In this work (see Rincon & Rieutord
(2003), Reese et al. (2004)), we aim, instead, at making a more detailed treat-
ment of these effects. This is done at the expense of working with an extremely
simplified star.

2 The model

The “star” we work with consists of a spherical shell of incompressible magnetized
fluid bathed in a permanent dipolar magnetic field. We then search for oscillation
modes in the form of perturbations ~v and ~b to the velocity and magnetic fields
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(resp.) with a temporal dependence exp(λt). These perturbations are governed
by the following set of non-dimensional linearised MHD equations:

~∇ · ~v = ~∇ ·~b = 0,

λ~∇× ~v = ~∇×

(

(~∇×~b) × ~B
)

+ E~∇× ∆~v,

λ~b = ~∇×

(

~v × ~B
)

+ Em∆~b.

(2.1)

where ~B is the permanent dipolar magnetic field, λ is an eigenvalue, and E, Em

represent the kinetic and magnetic diffusivities. These typically take on the values
Em = 10−8 and E = 10−13 (see Rincon & Rieutord (2003)). The perturbations

~v and ~b are composed of an infinite number of spherical harmonics with different
degrees ` but the same azimuthal order m.

3 Results

Our numerical simulations reveal two types of modes: the “poloidal” type and
the “toroidal” one. In the poloidal case, modes seem to be composed of a regular
adiabatic part centered on the magnetic poles, and of internal shear layers. These
internal shear layers correspond to resonant field lines with successive numbers
of nodes. In the toroidal case, the entire mode consists of one singular layer, its
location being accurately given by a resonant field line. As a result of this singular
structure, the damping rate of toroidal modes decreases more slowly than that of
poloidal modes when diffusivities are decreased. In both cases the least-damped
modes are the closest to the magnetic poles. Fig. 1 shows a poloidal and a toroidal
mode and Fig. 2 shows frequencies at which different field lines resonate.

An interesting aspect of this problem is the quantization of the eigenvalue
spectrum. Both the axisymmetric poloidal and toroidal spectra display a double
quantization. The first quantization corresponds to the number of nodes n along
field lines. This is represented by the gaps between the horizontal branches in
Fig. 3. The second quantization applies to the horizontal structure of the mode
and differs somewhat between the poloidal case (where the structure is regular)
and the toroidal case (where the mode is singular). It leads to the different modes
along a given branch. In the non-axisymmetric case, the poloidal and toroidal
spectra are mixed together, leading to branches that are doubled up. However,
when diffusivities are small enough, these branches start taking on more distinctive
poloidal or toroidal behaviours.

Due to the structure of the toroidal part of the equations, it is possible to come
up with a first order analytic solution to them, which has following basic form:

λn,q = λ0

n + ε1/2λ1

n,q where λ1

n,q = (q + 1)λ̃1

n,

bϕ = b0

n(r)fq(ν),
vϕ = v0

n(r)fq(ν),

(3.1)

where q represents the second quantum number, r is the radial coordinate, ν is a
dipolar coordinate that remains constant along field lines, and ε a small parameter
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Figure 1. The upper fig-

ure corresponds to a poloidal

mode and the lower one to

a toroidal mode. The dot-

ted lines correspond to res-

onant field lines calculated

with a WKB approximation,

whereas the dashed line in

the lower figure is a more

precise calculation adapted

only to toroidal modes. In-

ternal shear layers near the

dotted lines are slightly vis-

ible in the poloidal mode.

The lower figure uses a lin-

ear intensity scale instead of

logarithmic one in order to

give the mode a thinner ap-

pearance.

Figure 2. Resonance fre-

quencies of different field

lines for n = 0 and n = 1

node. The angle θ1 gives the

colatitude of the field line as

it crosses the outer bound-

ary. For a given number

of nodes, the oscillation rate

decreases when moving away

from the magnetic poles.

proportional to E and Em. The expressions of λ0

n, λ1

n,q , b0

n, v0

n and fq are given in
Reese et al. (2004). These formulas give accurate frequencies ω and a good idea
of the modes’ structure (see Fig. 4). However the damping rate τ predicted is not
very accurate due to a term that is O(ε) but proportional to ω2 (see Fig. 3).
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Figure 3. A comparison between a numer-

ical eigenspectrum and an analytical one

based on Eq. (3.1). The damping rate dif-

fers by a term proportional to εω
2. The er-

ror on the frequencies ranges from 1×10−4

to 1.4 × 10−3.

Figure 4. Comparison between a numer-

ical mode (upper figure) and an analyti-

cal one (lower figure). The left quadrant

of both figures is the magnetic dissipation

and the right quadrant the magnetic en-

ergy.

4 Conclusion

In this work, we have explored some of the basic properties and characteristics of
magnetic eigenoscillations of a highly simplified “star”. These studies show the
existence of two types of oscillatory modes, a double quantization of the eigenvalue
spectrum, and an approximate analytical solution in the toroidal case. It is also
interesting to note the importance of the magnetic poles for the least damped
modes, which is coherent with current observations of roAp stars. In subsequent
work, more realistic models of stars will be envisaged, and compressibility will be
taken into account in order to analyse magneto-acoustic waves.
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